Insights and innovations from our fellowship faculty
Our faculty lead transformative research at the intersection of medicine, data, and technology—advancing clinical decision-making, patient safety, and healthcare innovation through their scholarly work.
-
Recent Publications
-
Knake LA, Asbury R, Penisten S, Meyer N, Burrel K, Chuffo Davila R, Wright A, Blum JM. Successfully Transitioning an Interruptive Alert into a Noninterruptive Alert for Central Line Dressing Changes in the Neonatal Intensive Care Unit. Appl Clin Inform. 2024;15(5):965-969. Epub 2024 Aug 20. doi:10.1055/a-2394-4462 Successfully Transitioning an Interruptive Alert into a Noninterruptive Alert for Central Line Dressing Changes in the Neonatal Intensive Care Unit - PubMed Misurac J, Knake LA, Blum JM. The Effect of Ambient Artificial Intelligence Notes on Provider Burnout. Appl Clin Inform. 2025;16(2):252-258. Epub 2024 Nov 5. doi:10.1055/a-2461-4576 The Effect of Ambient Artificial Intelligence Notes on Provider Burnout - PubMed Knake LA, Kettelkamp J, Bronson A, Meyer N, Hacker K, Blum JM. Special Issue on CDS Failures: Transitioning an Ineffective Medications On Hold Alert from Interruptive to Non-Interruptive to Decrease Alert Burden. Appl Clin Inform. Online ahead of print. Epub 2025 Jun 16. doi:10.1055/a-2632-0605 Transitioning Ineffective Medications on Hold Alert from Interruptive to Noninterruptive Alert to Decrease Alert Burden - PubMed Kandaswamy S, Knake LA, Dziorny A, Hernandez S, McCoy AB, Hess LM, Orenstein E White MS, Kirkendall ES, Molloy M, Hagedorn P, Muthu N, Murugan A, Beus JM, Mai M, Luo B, Chaparro JD. Pediatric Predictive Artificial Intelligence Implemented in Clinical Practice from 2010 to 2021: A Systematic Review. Appl Clin Inform. 2025;16(3):477-487. Epub 2025 Jan 21. doi:10.1055/a-2521-1508 Pediatric Predictive Artificial Intelligence Implemented in Clinical Practice from 2010 to 2021: A Systematic Review - PubMed Knake LA. Artificial intelligence in pediatrics: the future is now. Pediatr Res. 2023;93(2):445-446. Epub 2022 Feb 3. doi:10.1038/s41390-022-01972-6 Artificial intelligence in pediatrics: the future is now - PubMed Sullivan BA, Beam K, Vesoulis ZA, Aziz KB, Husain AN, Knake LA, Moreira AG, Hooven TA, Weiss EM, Carr NR, El-Ferzli GT, Patel RM, Simek KA, Hernandez AJ, Barry JS, McAdams RM. Transforming neonatal care with artificial intelligence: challenges, ethical consideration, and opportunities. J Perinatol. 2024;44(1):1-11. Epub 2023 Dec 15. doi:10.1038/s41372-023-01848-5 Transforming neonatal care with artificial intelligence: challenges, ethical consideration, and opportunities - PubMed Husain A, Knake L, Sullivan B, Barry J, Beam K, Holmes E, Hooven T, McAdams R, Moreira A, Shalish W, Vesoulis Z. AI models in clinical neonatology: A review of modeling approaches and a consensus proposal for standardized reporting of model performance. Pediatr Res. Online ahead of print. Epub 2024 Dec 17. doi:10.1038/s41390-024-03774-4 AI models in clinical neonatology: a review of modeling approaches and a consensus proposal for standardized reporting of model performance - PubMed 2023 Kopsombut G, Knake L. How to optimize clinical decision support to improve care of children. AAP News. American Academy of Pediatrics, Feb 1, 2023. https://publications.aap.org/aapnews/news/23128/How-to-optimize-clinical-decision-support-to?searchresult=1?autologincheck=redirected Blum, J. M., Kheterpal, S. & Tremper, K. K. (2006). A comparison of anesthesiology resident and faculty electronic evaluations before and after implementation of automated electronic reminders. J Clin Anesth 18 (4) 264–267. PMID: 16797427 A comparison of anesthesiology resident and faculty electronic evaluations before and after implementation of automated electronic reminders - PubMed Blum, J. M., Stentz, M. J., Maile, M. D., Jewell, E., Raghavendran, K., Engoren, M. & Ehrenfeld, J. M. (2013). Automated alerting and recommendations for the management of patients with preexisting hypoxia and potential acute lung injury: a pilot study. Anesthesiology 119 (2) 295–302. PMID: 23681144, PMCID: PMC3813292 Automated alerting and recommendations for the management of patients with preexisting hypoxia and potential acute lung injury: a pilot study - PubMed Fu, K. & Blum, J. M. (2014). Controlling for cybersecurity risks of medical device software. Biomed Instrum Technol 48 (S1) 38–41. PMID: 24848148 Controlling for cybersecurity risks of medical device software - PubMed Blum, J. M., Joo, H., Lee, H. & Saeed, M. (2015). Design and implementation of a hospital wide waveform capture system. J Clin Monit Comput 29 (3) 359–362. PMID: 25224387 Design and implementation of a hospital wide waveform capture system - PubMed Wong, A. I., Kamaleswaran, R., Tabaie, A., Reyna, M. A., Josef, C., Robichaux, C., de Hond, A. A., Steyerberg, E. W., Holder, A. L., Nemati, S., Buchman, T. G. & Blum, J. M. (2021). Prediction of acute respiratory failure requiring advanced respiratory support in advance of interventions and treatment: a multivariable prediction model from electronic medical record data. Crit Care Explor 3 (5) e0402. PMID: 34079945, PMCID: PMC8162520 Prediction of Acute Respiratory Failure Requiring Advanced Respiratory Support in Advance of Interventions and Treatment: A Multivariable Prediction Model From Electronic Medical Record Data - PubMed Brown, J., Bhatnagar, M., Gordon, H., Lutrick, K., Goodner, J., Blum, J. M., Bartz, R., Uslan, D., David-DiMarino, E., Sorbello, A., Jackson, G., Walsh, J., Neal, L., Cyran, M., Francis, H. & Cobb, J. P. (2021). Clinical data extraction during public health emergencies: a blockchain technology assessment. Biomed Instrum Technol 55 (3) 103–111. PMID: 34460906 Clinical Data Extraction During Public Health Emergencies: A Blockchain Technology Assessment - PubMed Singhal, L., Garg, Y., Yang, P., Tabaie, A., Wong, A. I., Mohammed, A., Chinthala, L., Kadaria, D., Sodhi, A., Holder, A. L., Esper, A., Blum, J. M., Davis, R. L., Clifford, G. D., Martin, G. S. & Kamaleswaran, R. (2021). eARDS: a multi-center validation of an interpretable machine learning algorithm of early onset Acute Respiratory Distress Syndrome (ARDS) among critically ill adults with COVID-19. PLoS One 16 (9) e0257056. PMID: 34559819 eARDS: A multi-center validation of an interpretable machine learning algorithm of early onset Acute Respiratory Distress Syndrome (ARDS) among critically ill adults with COVID-19 - PubMed Wood, K. E., Pham, H. T., Carter, K. D., Nepple, K. G., Blum, J. M. & Krasowski, M. D. (2023). Impact of a switch to immediate release on the patient viewing of diagnostic test results in an online portal at an academic medical center. J Pathol Inform 14 100323. PMID: 37520309, PMCID: PMC10384271
Impact of a switch to immediate release on the patient viewing of diagnostic test results in an online portal at an academic medical center - PubMed Lilly, C. M., Kirk, D., Pessach, I. M., Lotun, G., Chen, O., Lipsky, A., Lieder, I., Celniker, G., Cucchi, E. W. & Blum, J. M. (2024). Application of machine learning models to biomedical and information system signals from critically ill adults. Chest 165 (5) 1139–1148. PMID: 37923292 Application of Machine Learning Models to Biomedical and Information System Signals From Critically Ill Adults - PubMed Cramer, E., Kuperman, E., Meyer, N. & Blum, J. M. (2024). Improving naloxone co-prescribing through clinical decision support. Cureus 16 (7) e63919. PMID: 39099893, PMCID: PMC11298243 Improving Naloxone Co-prescribing Through Clinical Decision Support - PubMed Dornbush, C., Mishra, A., Hrabe, J., Guyton, K., Axelrod, D., Blum, J. & Gribovskaja-Rupp, I. (2025). Remote monitoring after elective colorectal surgery, a pilot study. Surgery 179 108791. PMID: 39307673 Remote monitoring after elective colorectal surgery, a pilot study - PubMed Griffin BR, Mudireddy A, Horne BD, Chonchol M, Goldstein SL, Goto M, Matheny ME, Street WN, Vaughan-Sarrazin M, Jalal DI, Misurac J. Predicting Nephrotoxic Acute Kidney Injury in Hospitalized Adults: A Machine Learning Algorithm. Kidney Medicine. 2024 Oct 15;6(12):100918. doi: 10.1016/j.xkme.2024.100918. PMID: 39634332; PMCID: PMC11615141. Predicting Nephrotoxic Acute Kidney Injury in Hospitalized Adults: A Machine Learning Algorithm - PubMed